
AD-*193 676 o rH Tf, r~fT # OFN I FS "VANF lNGS I

F UNClASFE NI'~D sC 1ILY

~IND1



111114 1.6



I0

CL

INSTITUTE FOR COMPUTATIONAL
MATHEMATICS AND APPLICATIONS

Technical Report ICMA-88-118 February 1988

ON THE COMPUTATION OF FINITE INVARIANT SETS OF MAPPINGS 
1)

by

Werner C. Rheinboldt and Alex Gelman

Institute of Computational Mathematics and Applications
Department of Mathematics and Statistics

University of Pittsburgh

Department of Mathematics and Statistics

University of Pittsburgh
DTIC

_ MAY 1 1988t

S..D
3 43 S 'H

I Apr1N w PNCroes

Dunist UU nlmlod -



Technical Report ICMA-88-118 February 1988

ON THE COMPUTATION OF FINITE INVARIANT SETS OF MAPPINGS 1)

by

Werner C. Rheinboldt and Alex Gelman

Institute of Computational Mathematics and Applications
Department of Mathematics and Statistics

University of Pittsburgh
Pittsburgh, PA 15260

February, 1988

1) This work was in part supported by the Office of Naval Research under
under contract N-00014-80-C-0455, the National Science Foundation under
grant DCR-8309926, and the Air Force Office of Scientific Research under
grant 84-0131.

DTICIfELECTER
MAY 1 9 1988 1

t1 D-bp I'Tht f 1n, A-

nxove for pUc rla



On the Computation of Finite Invariant Sets of Mappings 1)

by

Alex Gelman 2) and Werner C. Rheinboldt 2)

Dedicated to Eugene Issacson on the occasion of his 70th birthday.

The problem of determining closed curves that are invariant under zcr:

given mapping arises in many applications and various numerical techniques

have been proposed for the calculation of such invariant cycles. We refer here

only to Doedel [1], looss et al [3], Kevrekidis et al [4], Van Veldhuizen,[6],

where further references may be found.

As in [4] we consider a continuously differentiable mapping

(s,x) E S IxR m 
- ((s),F(s,x)), 4Z:S . 1i, F:S xR m 

- Rm  
(1)

1 mwhere S is the unit circle in Rm . In other words, (1) is a mapping of the

lmcylinder S xR into itself. Then

Y: S S 1 xR m , 7(s) - (s,r(s)), s E S (2)

is invariant under (1) exactly if

r($(s)) = F(s,r(s)), s E SI  (3)

As usual, for the computation we approximate this curve by some polygon with

vertices xi = r(si) . i 1 1,2,...,n. But, other than in the cited references,

we also discretize the circle mapping 0 by the following mapping from

1) This work was supported in part by the Office of Naval Research under
contract N-00014-80-C-9455, the National Science Foundation under grant
DCR-8309926, and the Air Force Office of Scientific Research under grant
84-0131.

2) Department of Mathematics and Statistics, University of Pittsburgh,
Pittsburgh, PA 15260.
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N - (1,2,....n) into itself:

T: N - N, T(i) - [ - - n ], i E N (4)
21

Here [a] denotes the closest integer to a E R1 and (a) the positive fractional

part of a. Then, our discretization of (3) has the form

XT(i) - F(si , xi), i e N (5)

and hence represents a problem of finding a finite invariant set

P - ((sl, x) ..... (sn, x) (6)

of (1).

For the numerical solution of discretizations of the problem (3),

Newton's method is frequently employed. But then the computational cost is

3
typically of the order of (mn) and hence grows quickly with the number of

vertices of the approximating polygon. Here we want to show that for discreti-

zations of the form (5) it is possible to achieve a growth-rate that is -linear

in mn. This is certainly a considerable reduction, especially for applications

involving periodic solutions of large systems of ordinary differential equa-

tions.

Let r denote the connectivity graph representing the mapping IV: N - N of

(5); that is, r has N as its vertex set and a directed arc from i e N to

j E N exactly if j - *(i). Since * is a mapping of N into itself, the out-

degree of any vertex of r is exactly one, and, for any starting point i E N,

the directed path through the vertices

1 - i, ik+l - (ik), k- 0, 1 .... (7)

is uniquely determined. Because r has only n vertices, any such path ulti-

mately involves repeated vertices. Suppose that the first q>O vertices
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i k-+,...,q, of (7) are distinct but that i q+ repeats one of these earlier

vertices. Then we have two possible cases, namely,

(i) i q+ - i q that is iq is a fixed point of 0 which implies that ik - iq+ q

for k>q.

(ii) i q+ - ip for some p, O<p<q . Then the vertices i k-p,p+l,....,q form a

non-degenerate, directed cycle of r

If two paths (7) with distinct starting points have a vertex in common,

then they must be identical from then on, for otherwise there would have to be

a vertex with out-degree two. Hence, in particular, no two distinct cycles can

intersect. Thus the vertices i of r belong to three disjoint classes:

(a) i is a fixed point of (D

(b) i belongs to a unique cycle of r

(c) there is a unique directed path through i which terminates either at a

fixed point of $ or on a cycle of r.

In other words, P consists of finitely many disjoint components

F j-l,...,r each of which contains exactly one fixed point of D or one non-

degenerate cycle of r and all other vertices of r. belong to the class (c).
J

If Newton's method is applied to the system (5), then, at each step, a

linear system of the form

T m
(T-A) u - b , u - (uI, ... ,u n) uiERm, (8)

has to be solved, where

Tu T
Tu - (T(Ul) ..... ( (n))T
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and

A - diag(A I .... An A i - DF(x i ) E R
m x m , b -(b 1I ... bn) T, b - F(x(i)) E Rm

Evidently, (8) represents a recursion

u - bik + Aik Ui, 'ik+l - (i k), k-0,1,2,... (9)

Thus, for any vertex i of r of class (a); that is, for any fixed point i of 'P,

the value of u. can be calculated from1

(I - Ai)u i - bi

where I is the identity on Rm, if only the matrix on the left is nonsingular.m

Let i be some vertex of r of class (b) or (c). Then the path (7) started at

i0 - i begins with q>0 distinct vertices ik' k-0,1,...,q and we have

iq+l - i IO<p<q .

We define recursively the quantities

d b. +A d B -A.k B. , k-0,1..q+l (10)

ik+l • ik ik '  ik+1  k k

then (9) can be rewritten in terms of the unknown first u-value u.10

ui di+ B uI k-0,l, ...q+l (11)
Sk k k 0o

Therefore, u can be computed from the equation

(Bip - Biq ) uL0 - d .q - dip (12)

provided that the difference of the B-matrices on the left is non-singular.

Then, in turn, all ui k, k-l,2,.... ,q can be calculated from (11). Moreover, for

any other vertex in the same component of r as i0 the corresponding path will

end at a vertex j where the u-value is already known. Hence from (12) we can

calculate u provided that B is invertible. Thus, by continuing this process,
j J
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we can compute the u-values at all vertices of r as long as no singular

matrices are encountered. Since this approach is equivalent with a recursive

evaluation of the solution of (8) it follows readily that -- in real arith-

metic -- no singular matrix will ever arise if the matrix T - A in (8) is non-

singular.

Evidently, this recursive solution of (8) involves only the solution of

linear systems of the order m and hence can be expected to be considerably

faster than any standard decomposition of the full matrix in (8). In fact, all

our examples show that the run-time of the process is approximately linear in

nm.

In many applications, the circle map 4 in (la/b) is a fixed rotation:

s - s + w mod 2w, 0 < w < 2w (13)

Here it follows directly from (4) that ' must be injective and hence

represents a permutation on N . Thus F now consists of a finite number of dis-

joint cycles and the solution of (8) involves only the solution of finitely

many systems of the form (12).

As a first sample problem for this case we consider the following func-

tion (1) used also in [41:

1

t(s) - s + w mod 2w , w - 2x (52 - 1), s G S1  (14a)

F(s,x) - A x(l - x) + e cos(s), s E SI , x E R (14b)

where A - 3.46 and e is a parameter.

A code was implemented on a VAX-8650 which incorporates the above solu-

tion method. It uses a continuation procedure similar to that described in
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[5] to obtain invariant cycles for A sequence of e-values starting from the

constant solution x - 0.44 for e - 0.001 Table 1 gives some of the computed

values of r(0) for different e and for n - 377

r(0)

10.001 0.437523

0.01 0.411982

10.02 0.384902 1

1 0.03 0.376986

1 0.032 0.375482 1

0.034 0.373925 1

1 0.035 0.375158

0.0351 0.374768

0.0352 0.374059

1 0.035245 0.373697

TABLE 1

All calculation used double precision and a corrector tolerance of 10-6 A

corresponding run with n - 610 produced values of r(0) which differed only by

about 1.OxlO- 5 . The elapsed clock-time T for the execution of each cycle was

recorded, and Table 2 shows the quotients T/(nk) for different dimensions n

where k denotes the number of Newton corrector steps taken by the process. The

linear dependence of the time on n is clearly visible.
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n 233 377 610

T T T
nk nk nk

0.001 2.58 3.24 4.36

0.002 2.58 3.24 4.36

0.003 2.58 3.27 4.37

TABLE 2

For a second class of problems we consider a system of ordinary differential

equations

x' - f(x,t), xERm , tER I  (15)

which is assumed to have a 2w periodic solution x 0 (t). If xi = x 0 (ti), i e N

denotes some approximation of this solution, then the backward Euler discreti-

zation

- xi +hf(x i+I, t +) (16)

represents a system of the form (5) with a circle mapping (14a) for which

- 1 . Hence we can apply the recursive solution process to this system.

As a first sample problem we consider the following simple form of van

der Pol's equation

" x2)

x - A(l - x ) X' + x - 0 (16)

As shown, for example in [2], the solution satisfies

x - 2 cos(wt)+ A (0.75 sin(wt) - 0.25 sin(3wt) + O(A2), as A - 0 (17)

and w - I + O( 2 ) as A - 0
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In Table 3 we give some of the results of a calculation with the above

mentioned code for this problem when w - 1.

n-64 n-128 n-256 n-512

T T T T
A nerr err err err nk

nknk nk nk

0.02 0.01654 3.91 0.01560 3.70 0.01524 3.61 0.01511 3.55

0.04 0.03358 4.06 0.03162 3.71 0.03081 3.63 0.03050 3.54

0.06 0.05112 4.06 0.04811 3.83 0.04684 3.63 0.04631 3.57

0.08 0.06917 4.22 0.06522 3.75 0.06345 3.63 0.06271 3.57

0.l0 0.08777 4.22 0.08292 3.83 0.08073 3.67 0.07979 3.56

TABLE 3

Here err denotes the error in the infinity norm of Rn  between the com-

puted derivatives x' and the x'-values obtained from the expansion (17). The

corresponding errors in the x-values are slightly smaller. Evidently, the

error due to the zero-order approximation of the frequency w dominates the

discretization error. Once again the time depends linearly on n.

As a second problem we used the periodically forced brusselator

x' - A + x 2y - Bx - x +a coswt , y' - Bx - x 2y (18)

Here a and w are parameters and a frequent choice for the constants A and B is

A - 0.4, B - 1.2. The unforced brusselator (a - 0) then has a limnit cycle with

the natural frequency w " 0.3750375 .

For our computations we considered the resonance case w - w0 ' Then for

0 < lal < acrit - 0.0033 three periodic solutions are obtained two of which
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are inside the original limit cycle and one outside. With increasing Ial the

inside solutions approach each other until for jal - acrit they coincide and

for lal > acrit they disappear. The amplitude of the outside solution

increases with lal

In order to obtain suitable starting solutions for the continuation pro-

cess along these three solution branches, we imbed (18) into a homotopy

depending on a new parameter A. For this the equations are first transformed

to the new time t - w0 t . Then, by adding them, we see that z = x + y satis-

fies

z'- T(A - x - a cos t), t - l/w 0

Now x,x' are linear expressions of z',z'' and by substituting them into the

transformed equations and eliminating x and y , we obtain for

u - z - (A + B/A) the equation

u'' - -f(u,u',t,w) + -u(AT-u')2 + u'2(2A-A/B) (19a)

f(u,v,t,w) - T(I+A -B)v + v 3 + aT cos t + aT(AT7u') 2sin t] (19b)

From this the desired homotopy is constructed as follows

U' - v, v' - -Af(u,v,t,w(A)) - u(AT-A2 v)2 + A2v2(2A-B/A), (20)

where w(A) - A - 0.0249625A. Clearly, for A - 1 this system is equivalent with

(19a/b) and for A - 0 it reduces to the system u' - v, v' - -u which has an

infinite set of 2w- periodic solutions. The limit of the periodic solutions of

(20) for A - 0 can be derived by the classical small-parameter technique. For

this we need to solve the equations

f 21f(uO,vOtO)sin t dt - 0 *f27f(u v 0 t,o)cos dt - 0

. 0 0

with
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u0 - a sin t + P cos t, V0 - a cos t - sin t

For w(0) - A the evaluation of these integrals produces the system

(1+A2_B), - 0.75A 2 '( 2 + 62) + a - 0, (1+A2_B)a - 0.75A2 ( 2 + P2) + a/A = 0

which has the solutions

a-C1, 6--Aa, C 2 B-I-A 2 1/2
A 3(1+A )

where 7 satisfies

3 4a
- + D -0, D- 3 (21)

3(AC) 3(I+A )

This equation for 7 has three real roots for jDI < 2/34/3 ; that is, for

2a_
Jai < ai -4 - 0.0033

Exactly one of these roots has a different sign than a and always exceeds 1 in

modulus. The other two roots have the same sign as a and are less than one in

modulus; moreover, they coincide for laf - acrit and become complex for

ai > acrit.

For the computation we use now the homotopy (20) with a - 0 in which case

the three roots of (21) are y - -1,0,1 . With the corresponding functions

u0 , v0 for one of these roots as starting point we begin the continuation pro-

cess from A - 0 and proceed until at A - 1 some functions u1,v1 are

obtained. They, in turn, become the starting point for the continuation pro-

cess in the parameter a beginning from a - 0 and with A held at the fixed

value 1. During both continuations it is advisable to introduce in (21) the

transformed variables u - u - u., v - v - v. with j-0,1, respectively.
J 3

In terms of the original variables x,y of (18) the second continuation

process produces points along a branch of periodic solutions of the forced



brusselator. The properties of these solutions depend on the value of y with

which the first continuation was started. More specifically, as expected, in

the two cases 7 - -1,0 these solutions cease to exist when lal exceeds ait

while for 7 - I our second continuation process did not fail.

We present here only some results for the case latter case I - 1. The

first continuation always proceeded with steps of order 0.1 from A - 0 to

X - 1 . In Table 4 we give some results for the second continuation with

n - 64

T T
a r a r nT

ni nk

0.00 0.4561 4.22 0.11 0.3938 '4.30

10.01 0.4292 4.18 0.12 0.3865 4.38

10.02 0.3981 4.32 0.13 0.3579 4.38

0.03 0.3604 4.38 0.14 0.3363 4.32

0.04 0.3119 4.34 0.15 0.3216 4.32

10.05 0.2399 4.22 0.20 0.2960 4.42

0.06 0.08461 4.48 0.25 0.2971 4.38

0.07 0.02140 4.22 0.30 0.3070 4.48

10.08 0.03430 4.30 0.35 0.3224 4.38

0.09 0.09779 4.42 0.40 0.3424 4.61

0.10 0.1986 4.30

TABLE 4

Here r - (x(O) 2 + x'(0)2 1/ 2 and not all continuation steps are shown.

In fact, the process slows down before the turning points of r . The linear
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dependence of the time on n is again evident.
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